HumanInsight Predicting Pain Response to a Remote Musculoskeletal Care Program for Low Back Pain Management: Development of a Prediction Tool
JMIR Med Inform. 2024 Nov 19;12:e64806. doi: 10.2196/64806.
ABSTRACT
BACKGROUND: Low back pain (LBP) presents with diverse manifestations, necessitating personalized treatment approaches that recognize various phenotypes within the same diagnosis, which could be achieved through precision medicine. Although prediction strategies have been explored, including those employing artificial intelligence (AI), they still lack scalability and real-time capabilities. Digital care programs (DCPs) facilitate seamless data collection through the Internet of Things and cloud storage, creating an ideal environment for developing and implementing an AI predictive tool to assist clinicians in dynamically optimizing treatment.
OBJECTIVE: This study aims to develop an AI tool that continuously assists physical therapists in predicting an individual's potential for achieving clinically significant pain relief by the end of the program. A secondary aim was to identify predictors of pain nonresponse to guide treatment adjustments.
METHODS: Data collected actively (eg, demographic and clinical information) and passively in real-time (eg, range of motion, exercise performance, and socioeconomic data from public data sources) from 6125 patients enrolled in a remote digital musculoskeletal intervention program were stored in the cloud. Two machine learning techniques, recurrent neural networks (RNNs) and light gradient boosting machine (LightGBM), continuously analyzed session updates up to session 7 to predict the likelihood of achieving significant pain relief at the program end. Model performance was assessed using the area under the receiver operating characteristic curve (ROC-AUC), precision-recall curves, specificity, and sensitivity. Model explainability was assessed using SHapley Additive exPlanations values.
RESULTS: At each session, the model provided a prediction about the potential of being a pain responder, with performance improving over time (P<.001). By session 7, the RNN achieved an ROC-AUC of 0.70 (95% CI 0.65-0.71), and the LightGBM achieved an ROC-AUC of 0.71 (95% CI 0.67-0.72). Both models demonstrated high specificity in scenarios prioritizing high precision. The key predictive features were pain-associated domains, exercise performance, motivation, and compliance, informing continuous treatment adjustments to maximize response rates.
CONCLUSIONS: This study underscores the potential of an AI predictive tool within a DCP to enhance the management of LBP, supporting physical therapists in redirecting care pathways early and throughout the treatment course. This approach is particularly important for addressing the heterogeneous phenotypes observed in LBP.
TRIAL REGISTRATION: ClinicalTrials.gov NCT04092946; https://clinicaltrials.gov/ct2/show/NCT04092946 and NCT05417685; https://clinicaltrials.gov/ct2/show/NCT05417685.
PMID:39561359 | DOI:10.2196/64806
Powered by WPeMatico
Sede Legale
Viale Campi Flegrei 55
80124 - Napoli
Sede Operativa
Via G.Porzio 4
Centro Direzionale G1
80143 - Napoli