HumanInsight Detection of hypertension from pharyngeal images using deep learning algorithm in primary care settings in Japan
BMJ Health Care Inform. 2024 Oct 23;31(1):e100824. doi: 10.1136/bmjhci-2023-100824.
ABSTRACT
BACKGROUND: The early detection of hypertension using simple visual images in a way that does not require physical interaction or additional devices may improve quality of care in the era of telemedicine. Pharyngeal images include vascular morphological information and may therefore be useful for identifying hypertension.
OBJECTIVES: This study sought to develop a deep learning-based artificial intelligence algorithm for identifying hypertension from pharyngeal images.
METHODS: We conducted a secondary analysis of data from a clinical trial, in which demographic information, vital signs and pharyngeal images were obtained from patients with influenza-like symptoms in multiple primary care clinics in Japan. A deep learning-based algorithm that included a multi-instance convolutional neural network was trained to detect hypertension from pharyngeal images and demographic information. The classification performance was measured by area under the receiver operating characteristic curve. Importance heatmaps of the convolutional neural network were also examined to interpret the algorithm.
RESULTS: This study included 7710 patients from 64 clinics. The training dataset comprised 6171 patients from 51 clinics (460 positive cases), and the test dataset comprised 1539 patients from 13 clinics (130 positive cases). Our algorithm achieved an area under the receiver operating characteristic curve of 0.922 (95% CI, 0.904 to 0.940), significantly improving over the baseline prediction model incorporating only demographic information, which scored 0.887 (95% CI, 0.862 to 0.911). Our algorithm had consistent classification performance across all age and sex subgroups. Importance heatmaps revealed that the algorithm focused on the posterior pharyngeal wall area, where blood vessels are mainly located.
CONCLUSIONS: The results indicate that a deep learning-based algorithm can detect hypertension with high accuracy using pharyngeal images.
PMID:39448071 | DOI:10.1136/bmjhci-2023-100824
Powered by WPeMatico
Sede Legale
Viale Campi Flegrei 55
80124 - Napoli
Sede Operativa
Via G.Porzio 4
Centro Direzionale G1
80143 - Napoli