Phone: (+39) 0813995453


Clinical Utility of Machine Learning-Derived Vocal Biomarkers in the Management of Heart Failure

HumanInsight Clinical Utility of Machine Learning-Derived Vocal Biomarkers in the Management of Heart Failure

Circ Rep. 2024 Jul 20;6(8):303-312. doi: 10.1253/circrep.CR-24-0064. eCollection 2024 Aug 9.

ABSTRACT

BACKGROUND: This study aimed to systematically evaluate voice symptoms during heart failure (HF) treatments and to exploratorily extract HF-related vocal biomarkers.

METHODS AND RESULTS: This single-center, prospective study longitudinally acquired 839 audio files from 59 patients with acute decompensated HF. Patients' voices were analyzed along with conventional HF indicators (New York Heart Association [NYHA] class, presence of pulmonary congestion and pleural effusion on chest X-ray, and B-type natriuretic peptide [BNP]) and GOKAN scores based on the assessment of a cardiologist. Machine-learning (ML) models to estimate HF conditions were created using a Light Gradient Boosting Machine. Voice analysis identified 27 acoustic features that correlated with conventional HF indicators and GOKAN scores. When creating ML models based on the acoustic features, there was a significant correlation between actual and ML-derived BNP levels (r=0.49; P<0.001). ML models also identified good diagnostic accuracies in determining HF conditions characterized by NYHA class ≥2, BNP ≥300 pg/mL, presence of pulmonary congestion or pleural effusion on chest X-ray, and decompensated HF (defined as NYHA class ≥2 and BNP levels ≥300 pg/mL; accuracy: 75.1%, 69.1%, 68.7%, 66.4%, and 80.4%, respectively).

CONCLUSIONS: The present study successfully extracted HF-related acoustic features that correlated with conventional HF indicators. Although the data are preliminary, ML models based on acoustic features (vocal biomarkers) have the potential to infer various HF conditions, which warrant future studies.

PMID:39132330 | PMC:PMC11309773 | DOI:10.1253/circrep.CR-24-0064

Powered by WPeMatico

P.IVA 08738511214
Privacy Policy
Cookie Policy

Sede Legale
Viale Campi Flegrei 55
80124 - Napoli

Sede Operativa
Via G.Porzio 4
Centro Direzionale G1
80143 - Napoli

ISO9001
AI 4394
© Copyright 2022 - Humaninsight Srls - All Rights Reserved
Privacy Policy | Cookie Policy
envelopephone-handsetmap-marker linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram